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Controlling one-dimensional unimodal population maps by harvesting at a constant rate
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Department of Mathematics, Technion, Israel Institute of Technology, Haifa 32000, Israel

~Received 16 September 1997!

Controlling chaos and periodic oscillations in dynamical systems is a well known problem. It has been
studied by several types of algorithms, some of which were only demonstrated numerically with specific
examples. We study here a class of one-dimensional discrete maps of the formxn115 f (xn), wheref (x) is a
unimodal function satisfying a few natural conditions as a model for the dynamics of a single species popu-
lation. For managing the population we seek to suppress any possible chaotic or periodic behavior that may
emerge. The paper proposes a simple, rigorously proved algorithm for controlling unimodal maps, imple-
mented by harvesting the population at a constant rate. This forces the orbits of the map to converge to a limit
that we can computea priori. The result holds for any initial conditions within an interval that we specify. Our
control algorithm is easy to implement, requires no updated information on the population and no changes in
the parameters of the system, which, in general, are fixed by the properties of the population. It can therefore
be useful for exploiting a population while maintaining it at a fixed density.@S1063-651X~98!08103-3#

PACS number~s!: 05.45.1b
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I. INTRODUCTION: BACKGROUND AND MOTIVATION

One-dimensional maps of the form

xn115 f ~xn! ~1!

have been used for modeling the dynamics of single spe
populations with nonoverlapping generations~e.g., @1–3#!.
Comparisons of model predictions to field data were d
cussed~e.g., @4–7#!. One-dimensional maps were also us
as theoretical examples for producing chaotic orbits w
very simple dynamics~e.g., @2,8#!, and some theory of dis
crete maps can be found in@9# and @10#.

We are interested here in a special class of ‘‘sin
humped’’ maps@11# where f : I→I is a C2 unimodal func-
tion, on the intervalI #@0,̀ ). We also impose here a few
natural conditions onf (x), as the map supposedly describ
the growth of a population and is also assumed to disp
rich dynamics~needed to be suppressed!. We thus assume
that f (0)50, f 8(0).1, and that there exist two fixed poin
satisfying f (x)5x. The first such point isx50 and it is an
unstablefixed point of the map~1!. The second occurs a
somexQ.0, past the peak off (x). We further assume tha
f 8(xQ),21, to ensure thatxQ is also an unstable fixed poin
of the map~1!. Rich dynamics, such as chaotic oscillatio
that we may want to suppress, would not occur otherw
Finally, we assume thatf (x),x for x.xQ , and thatf 9(x)
,0 for 0<x<B for someB.xQ . Typically, the maps used
in the literature depend on one or more parameters
‘‘tune’’ their dynamics. They satisfy the above conditions
least in some parameter range. Some examples are the
sical population models such as the logistic map wh
f (x)5rx(12x), the exponential map wheref (x)
5xer (12x), the maps f (x)5rx/@11(ax)b# @12#, f (x)
5rx/(11ax)b @4,5#, f (x)5lx(11x1c/x)2b @3#, and oth-
ers. Herer ,a,b,c,l,b are positive parameters used for tu
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ing the respective models~ideally fit them to data!. All of
these maps exhibit periodic and chaotic oscillations in so
parameter range.

It is well known that even simple maps can display ch
otic dynamics, and the problem of suppressing such ch
has therefore drawn some research effort. Several diffe
chaos suppressing algorithms were applied to discrete
tems, systems of ordinary differential equations, and exp
mental setups. One approach stabilizes chaos by chan
the system parameters~e.g., @13–15#!. Other techniques ap
ply continuous feedback@16#, weak external periodic force
@17#, small perturbations@18#, or add noise to the system~see
@19# where several methods were used for controlling ch
in the BVP oscillator!.

Often it is not easy to derive rigorous conclusions in th
context, particularly in discrete systems. Thus, some of
above, as well as many other related publications, prop
methods that are merely tested with specific examples
supported only by numerical evidence. Consequently, so
difficulties may arise. Consider, for example, Gu¨émez and
Matias @20# who studied one-dimensional discrete maps a
proposed to control chaos by occasional application of p
portional feedback, i.e., changingxn into xn85(11g)xn ev-
ery Dn iterations. To support their proposed algorithm, th
demonstrated it with the logistic and the exponential ma
for some specific choice of parameters, showing several
merically computed orbits. It was explained that a lar
number of iterations was calculated to assure the periodi
of the resulting orbits, which did not set in immediatel
Although this algorithm was reported to depend strongly
g andDn, no method was provided for obtaining appropria
values~or range! of these parameters, or even the sign ofg.
It is therefore not clear that this algorithm would be succe
ful with other values ofg andDn, with another choice of the
tuning parameterr , with a different choice of initial condi-
tions, or with other maps. In fact, it is not even proved th
this algorithm did work for the two tested maps becau
observations of a finite number of iterations cannot ass
periodicity or convergence. The two maps mentioned in@20#
3645 © 1998 The American Physical Society
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were partly motivated as a description of population grow
However, it is not clear that the proposed algorithm is pr
tical in this context, since one needs to knowxn when the
perturbation is applied, and then add~if g.0! a proportional
number of individuals to the system.

In this paper we study a simple algorithm for suppress
chaos or any periodic oscillations in a unimodal maps. I
implemented by harvesting the population at a constant r
that is by modifying the map~1! to

xn115 f ~xn!2K ~2!

with some constantK.0. This constant feedback metho
has a practical advantage in the following sense: It requ
no updated information on the state of the system beca
~unlike adaptive chaos control algorithms used in ca
where the map itself is unknown! it does not use the value o
xn . Unlike other methods, it does not change any of
system parameters, which, in general, may be fixed by
properties of the population. Finally, this control algorithm
easy to implement in practice, and more important,K.0
implies that control is achieved byharvestingthe population.
To the extent that such one-dimensional maps indeed cap
the essential features of the population growth, this algorit
can be useful for managing and exploiting populations.
are less interested here in control obtained by usingK,0,
which represents constant positive migration, although
approach has been discussed in the literature. For exam
McCallum @21# and Stone@22# studied the effect of such
positive migration on several one-dimensional maps~e.g.,
the exponential map! by providing numerical evidence of th
rich dynamics that emerge.

Recently, Parthasarathy and Sinha@23,24# illustrated a
method for suppressing chaos by means of a constant f
back as described in Eq.~2!. They investigated numerically
the logistic and the exponential maps, with some spec
choice of parameters and initial conditions. Graphs ofxn
versusn were plotted, showing some number of iterations
the map~2!. These graphs demonstrated apparent decay
fixed point and apparent periodic behavior with some val
of feedbackK, in contrast to apparent chaotic behavior wit
out feedback~i.e.,K50!. However, no proof of convergenc
was given, no discussion of appropriate initial conditio
was mentioned, and no rigorous argument was offered
show how to chooseK. TheK-r parameter space of the tw
maps was divided into regions displaying different behav
based on numerical tests with successive increments oK
and r values. It was suggested that the sign of the value
K that are capable of suppressing chaos depends in ge
on f (x). This speculation is inaccurate, and we show h
that it is always possible to chooseK.0.

Numerical investigation of a discrete system may g
some indication of its dynamics. It is extremely useful
both complicated and simple cases, and often seems to b
only feasible approach. Nevertheless, the possibility of dr
ing general conclusions from numerical investigation in t
context is limited. A finite number of iterations started wi
some specific initial condition can at best demonstrate ca
where the algorithm apparently works. It cannot prove tha
sequence of iterations converges or displays chaotic or p
odic behavior. Furthermore, to make the suggested algor
.
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applicable, one must provide a systematic method for cho
ing K and computing the range of appropriate initial con
tions from which convergence is guaranteed. This is don
the next section.

II. CONTROL BY HARVESTING AT A CONSTANT RATE

We prove the following result: chaos or any periodic d
namics in unimodal maps can be controlled byharvestingthe
population at a constant rate, and there exists an interva
feasible values of harvesting rates that can be used for
purpose. For each such feasible value (K.0), there exists
an interval of initial conditionsx0 for which xn , defined by
Eq. ~2!, converges to a limit that is independent ofx0 .

The underlying idea on which the algorithm is based
very simple and intuitive. Harvesting the population shi
the graph of the unimodal map downwards. The unsta
fixed point around which we have undesired oscillations
comes stable and we can compute the appropriate bas
attraction. The precise formulation is given in the followin
theorem.

Theorem 1: Let f : I→I ~whereI #@0,̀ )! be aC2 function
satisfying the following conditions: 1.f (0)50. 2. f (x) has
two fixed points:x50 and x5xQ.0, with f 8(0).1 and
f 8(xQ),21. 3. f (x) attains its maximum at the poin
M „xM , f (xM)… for 0,xM,xQ . 4. f 9(x),0 for xP@0,B#
for someB.xQ . 5. f (x).x for x,xQ and f (x),x for x
.xQ . Then there exist positive numbers 0,a1,a2 such
that for any choice ofKP(a1 , a2) the sequence

xn115 f ~xn!2K, n50,1,2,... ~3!

converges toxR(K) for any choice ofx0P„xL(K),xR(K)…,
wherexL(K),xR(K) are the two solutions of the equatio
x1K5 f (x).

Proof: We first prove the claim using only information o
the interval@0,xM#. In this case we can relax all the cond
tions on f (x) concerningx.xM including unimodality. We
consider the equation

f 8~x!51. ~4!

From the conditions given onf (x) it follows that Eq.~4! has
exactly one solution in the interval (0,xM). We denote this
solution byxP and seta25 f (xP)2xP . We also definea1
5 f (xM)2xM . Since f 8(xP)51 and we havef 9(x),0 on
(0, xM) we conclude that 0,a1,a2 . Now, for any given
KP(a1 ,a2) the equation

x5 f ~x!2K ~5!

has exactly the two solutions on the intervalxP(0, xM). We
denote these solutions byxL5xL(K) andxR5xR(K), where
xL,xR,xM .

Suppose now that for somek>0 we havexkP(xL , xR).
Since on the interval (xL ,xR) we havef (x)2K.x, we may
conclude thatxk115 f (xk)2K.xk . On the other hand, sinc
f (x) is monotonically increasing on (xL,xR) we also have
xk115 f (xk)2K, f (xR)2K. Consequently, for any
x0P(xL ,xR) we have by induction thatxn is a monotonically
increasing bounded sequence, and is therefore conver
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Its limit is a solution of Eq.~5!, and since it is clearly notxL ,
we finally have lim

n→`
xn5xR , which proves the desired resu

This construction does not use any information on
behavior of f (x) beyondxM . However, if we use such in
formation on f (x), we can extend the interval from whic
we are allowed to chooseK. In this case, the convergence
the limit is not necessarity monotonic. We consider the eq
tion

f 8~x!521 ~6!

From the conditions given onf (x) we conclude that Eq.~6!
has a unique solution on the intervalxM,x,xQ . We denote
this solution byxS and seta185 f (xM)2xS.0. The condi-
tions given on f (x) assure that 0,a18,a1 . For any
KP(a18 ,a1) we definexL(K) andxR(K) as the two solutions
of Eq. ~5!, as above. To complete the proof we show tha
x0P(xL ,xR) andKP(a18 ,a1) the sequencexn converges to
xR . The sequencexn is bounded byf (xM)2K. Since it can-
not be monotonically increasing, it follows that there is
index k wherexkP„xM , f (xM)2K…. Since the choice ofK
implies f (xM)2xS,K, f (xM)2xM , and f 9(x),0 in this
interval, we have 215 f 8(xS), f 8( f (xM)2K), f 8(xM)
50. Therefore, the map~3! is a contraction on the discusse
interval, and the result follows.

A. Remarks

1. A natural question that arises following the proof of t
theorem is: What happens ifx0 is not chosen in the interva
x0P(xL ,xR), as required by the theorem? This question
actually related to the fact that the modified map~3! does not
map the intervalI to itself. Therefore, if the initial conditions
are not chosen within the interval (xL ,xR), we can not guar-
antee convergence to equilibrium. If 0,x0,xL , the se-
quencexn decreases until it eventually becomes negative.
that point we stop the iterations and declare the extinction
the population. Ifx0.xR then the dynamics depend onf (x).
The sequencexn starts decreasing and after a finite numb
of iterations it either falls within the interval (xL ,xR) and
then converges as explained above, or falls belowxL where
extinction occurs.

2. We also point out theorem 1 provides only sufficie
conditions for convergence. Values ofK outside the pre-
scribed interval can either succeed or fail in suppressing c
otic or periodic oscillations, and can also drive the popu
tion to extinction~compare to the results reported in@24#!. In
general, this depends on the map and onx0 , as demonstrated
below. In terms of population management, this means
inappropriate values ofK are ‘‘dangerous.’’

3. Control by harvesting is not necessarily successful w
unimodal maps that do not satisfy the conditions of theor
1, particularly the smoothness requirements. One easy
ample is the mapf (x)51/2x whenxP@0,1/2# and f (x)51
21/2x whenxP(1/2,1#.

B. Summary of the method

1. Compute (xM ,yM), the maximum point off (x). 2.
Solve f 8(x)51 on (0,xM) to obtain xP . 3. Solve f 8(x)5
21 on (xM ,xQ) to obtain xS . 4. Seta25 f (xP)2xP , a1
e
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5f(xM)2xM , a185 f (xM)2xS . 5. For any choice ofK
P(a18 ,a2) the sequencexn is convergent, and ifK
P(a1 ,a2) it converges monotonically. 6. For any approp
ate value ofK, the initial conditionx0 may be any chosen
value in the interval (xL ,xR) wherexL,xR,xM are the two
solutions of the equationf (x)5x1K. The limit of xn is xR .

C. Examples

1. We demonstrate our method with the logistic m
f (x)5rx(12x): @0,1#→@0,1# with 3,r<4. Theorem 1
provides all the information required, and the calculatio
are straightforward:

a25 f ~xP!2xP5
1

4r
~r 222r 11!,

a15 f ~xM !2xM5
1

4
r 2

1

2
,

~7!

a185 f ~xM !2xS5
1

4r
~r 222r 22!,

xL ,xR5
211r 6A122r 1r 224rK

2r
.

We consider the choicer 53.8, which was the case studied
@16#, where it was shown that 150 iterations ofxn defined by
Eq. ~3! and started fromx050.3 ‘‘apparently converge’’ to a
fixed point if K50.3, whereas this apparently does not occ
for K50.2 ~period-2 orbits! or for K50 ~chaotic orbits!.
Similar results were reported in this context in@24#.

For this choice ofr , theorem 1 assures that for a
0.318 425,K,0.515 78 the sequencexn converges to the
limit xR(K)5xR . This holds for all initial values within
„xL(K),xR(K)…, specified in Eq.~7!. Further, if 0.45,K
,0.515 789 the sequencexn is also monotonically increas
ing.

As explained above, theorem 1 provides only sufficie
but not necessary conditions. For example, note that
choiceK50.3 with x050.3 that was used in@23# belongs to
a region where in general the algorithm may or may n
succeed, depending on the specific map. In this specific c
convergence occurs becausex050.3⇒x150.4980 and the
map ~3! is already a contraction in this region.

2. We examine the exponential mapf (x)
5xer (12x):@0,̀ )→@0,̀ ) with the choicer 52.8 as in@23#
where plots of 150 iterations ofxn defined by Eq.~3! and
started fromx050.3 were displayed. They indicated appa
ent convergence to a fixed point ifK520.95 whereas this
did not occur forK520.5 ~period-2 orbits! or for K50
~chaotic orbits!.

To use theorem 1 we solve the equations (12rx)er (12x)

561 and obtainxP and xS . Clearly, xM51/r , and the re-
maining calculations are straightforward. Forr 52.8 we find
that if 1.731 169,K,1.803 445 the sequencexn converges
to the fixed point xR(K), for all initial conditions
„xL(K),xR(K)…. To computexL(K) and xR(K) for a given

value of K one only needs to solve the equationxer (12x)
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5x1K. Note that the interval of feasible values ofK.0
decreases asr is increased, as indicated by theK-r param-
eter space map in@23#.

III. DISCUSSION

There exist simple examples of discrete maps where
easy to observe numerically rich dynamics but difficult
prove rigorously that this indeed occurs. Numerical simu
tions are crucial in many such cases and are the only fea
approach in others, as seen frequently in the literature. H
ever, the ability to make general predictions based on a fi
number of iterations of discrete maps is rather limited. It
therefore important to distinguish between numerical e
dence and rigorous results.

Here, we have shown how to assure convergence o
algorithm for suppressing chaotic or periodic oscillations,
a whole class of one-dimensional maps without comput
numerically even one orbit. This convergence is guarant
for a whole range of initial conditions. The last point is ofte
neglected in numerical reports. The method proposed h
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requires only solving some one-dimensional equations. O
this is done, andK and x0 are chosen appropriately, th
algorithm does not depend on the dynamics of the map
more. To the extent that such maps indeed capture the es
tial features of the population growth, this algorithm can
useful for managing and exploiting populations.

Finally, we point out that it is not obvious how our algo
rithm would perform in the presence of stochastic noise
the population, as may be the case in real systems. Par
larly, it is not clear whether extinction would prevail ove
convergence to the desired fixed point. It is also not cl
how to generalize the algorithm to multidimensional ma
These points may be interesting directions to pursue.
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