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Controlling one-dimensional unimodal population maps by harvesting at a constant rate
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Controlling chaos and periodic oscillations in dynamical systems is a well known problem. It has been
studied by several types of algorithms, some of which were only demonstrated numerically with specific
examples. We study here a class of one-dimensional discrete maps of the,formf(x,), wheref(x) is a
unimodal function satisfying a few natural conditions as a model for the dynamics of a single species popu-
lation. For managing the population we seek to suppress any possible chaotic or periodic behavior that may
emerge. The paper proposes a simple, rigorously proved algorithm for controlling unimodal maps, imple-
mented by harvesting the population at a constant rate. This forces the orbits of the map to converge to a limit
that we can compute priori. The result holds for any initial conditions within an interval that we specify. Our
control algorithm is easy to implement, requires no updated information on the population and no changes in
the parameters of the system, which, in general, are fixed by the properties of the population. It can therefore
be useful for exploiting a population while maintaining it at a fixed den$$.063-651X98)08103-3

PACS numbegs): 05.45+b

I. INTRODUCTION: BACKGROUND AND MOTIVATION ing the respective modelgdeally fit them to data All of
these maps exhibit periodic and chaotic oscillations in some
One-dimensional maps of the form parameter range.
It is well known that even simple maps can display cha-
Xn+1= F(Xn) (1) otic dynamics, and the problem of suppressing such chaos

has therefore drawn some research effort. Several different
have been used for modeling the dynamics of single speciashaos suppressing algorithms were applied to discrete sys-
populations with nonoverlapping generatiofesg., [1-3]).  tems, systems of ordinary differential equations, and experi-
Comparisons of model predictions to field data were dismental setups. One approach stabilizes chaos by changing
cussed(e.g.,[4—7]). One-dimensional maps were also usedthe system paramete(s.g.,[13—15). Other techniques ap-
as theoretical examples for producing chaotic orbits withply continuous feedbackl6], weak external periodic forces
very simple dynamicge.g.,[2,8]), and some theory of dis- [17], small perturbationEl8], or add noise to the systefsee

crete maps can be found @] and[10]. [19] where several methods were used for controlling chaos
We are interested here in a special class of “singlein the BVP oscillatoy.
humped” mapg11] wheref: |—I is a C? unimodal func- Often it is not easy to derive rigorous conclusions in this

tion, on the intervall C[00). We also impose here a few context, particularly in discrete systems. Thus, some of the
natural conditions orfi(x), as the map supposedly describesabove, as well as many other related publications, propose
the growth of a population and is also assumed to displaynethods that are merely tested with specific examples and
rich dynamics(needed to be suppresgetlVe thus assume supported only by numerical evidence. Consequently, some
thatf(0)=0, f'(0)>1, and that there exist two fixed points difficulties may arise. Consider, for example, @wez and
satisfyingf(x) =x. The first such point ix=0 and it is an Matias[20] who studied one-dimensional discrete maps and
unstablefixed point of the map(1). The second occurs at proposed to control chaos by occasional application of pro-
somexq>0, past the peak of(x). We further assume that portional feedback, i.e., changing into x;,=(1+ y)x, ev-
f’(xq) <—1, to ensure that, is also an unstable fixed point ery An iterations. To support their proposed algorithm, they
of the map(1). Rich dynamics, such as chaotic oscillationsdemonstrated it with the logistic and the exponential maps
that we may want to suppress, would not occur otherwisefor some specific choice of parameters, showing several nu-
Finally, we assume thdft(x) <x for x>xq, and thatf”(x) merically computed orbits. It was explained that a large
<0 for O=x=B for someB>Xx,. Typically, the maps used number of iterations was calculated to assure the periodicity
in the literature depend on one or more parameters thaif the resulting orbits, which did not set in immediately.
“tune” their dynamics. They satisfy the above conditions at Although this algorithm was reported to depend strongly on
least in some parameter range. Some examples are the clasandAn, no method was provided for obtaining appropriate
sical population models such as the logistic map where/alues(or range of these parameters, or even the signyof
f(x)=rx(1—x), the exponential map wheref(x) It is therefore not clear that this algorithm would be success-
=xe™¥  the maps f(x)=rx/[1+(ax)®] [12], f(x) ful with other values ofyandAn, with another choice of the
=rx/(1+ax)® [4,5], f(x)=Ax(1+x+c/x) # [3], and oth-  tuning parameter, with a different choice of initial condi-
ers. Herer,a,b,c,\, 8 are positive parameters used for tun- tions, or with other maps. In fact, it is not even proved that
this algorithm did work for the two tested maps because
observations of a finite number of iterations cannot assure
*Electronic address: shay@math.technion.ac.il periodicity or convergence. The two maps mentione2i]
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were partly motivated as a description of population growth.applicable, one must provide a systematic method for choos-
However, it is not clear that the proposed algorithm is pracing K and computing the range of appropriate initial condi-
tical in this context, since one needs to knaywwhen the tions from which convergence is guaranteed. This is done in
perturbation is applied, and then a@fl y>0) a proportional the next section.
number of individuals to the system.

In this paper we study a simple algorithm for suppressing;; coNTROL BY HARVESTING AT A CONSTANT RATE
chaos or any periodic oscillations in a unimodal maps. It is
implemented by harvesting the population at a constant rate, We prove the following result: chaos or any periodic dy-

that is by modifying the maygl) to namics in unimodal maps can be controllediayvestingthe
population at a constant rate, and there exists an interval of
Xns1=F(X,) —K 2) feasible values of harvesting rates that can be used for this

purpose. For each such feasible vall&e>0), there exists

with some constanK>0. This constant feedback method @n interval of initial conditions, for which x,, defined by
has a practical advantage in the following sense: It require§0d- (2), converges to a limit that is independentxgf.

no updated information on the state of the system because The underlying idea on which the algorithm is based is
(unlike adaptive chaos control algorithms used in case¥€ry simple and intuitive. Harvesting the population shifts
where the map itself is unknowit does not use the value of the graph of the unimodal map downwards. The unstable
x,. Unlike other methods, it does not change any of thdixed point around which we have undesired osc!IIatlons _be—
system parameters, which, in general, may be fixed by théomes stable and we can compute the appropriate basin of
properties of the population. Finally, this control algorithm is attraction. The precise formulation is given in the following
easy to implement in practice, and more importagt;0  theorem. _
implies that control is achieved arvestingthe population. Theorem iLetf: | —I (wherel C[0)) be aC? function

To the extent that such one-dimensional maps indeed captuf@tisfying the following conditions: 1£(0)=0. 2. f(x) has

the essential features of the population growth, this algorithniwo fixed points:x=0 and x=xo>0, with {’(0)>1 and
can be useful for managing and exploiting populations. We'(XgQ)<—1. 3. f(x) attains its maximum at the point
are less interested here in control obtained by using0, M Xw.f(xw)) for 0<xy<xq. 4. f"(x)<0 for xe[0B]
which represents constant positive migration, although thifor someB>Xq. 5. f(x)>x for x<xq and f(x) <x for x
approach has been discussed in the literature. For exampl&Xq. Then there exist positive numbers<@;<a, such
McCallum [21] and Stone[22] studied the effect of such that for any choice oK e (a;, a,) the sequence

positive migration on several one-dimensional mépg.,

the exponential mapby providing numerical evidence of the Xn+1=f(Xy) =K, n=0,12,.. 3

rich dynamics that emerge.

Recently, Parthasarathy and Sinf28,24 illustrated a converges tog(K) for any choice ofx, e (x.(K),Xr(K)),
method for suppressing chaos by means of a constant feedherex, (K) <xg(K) are the two solutions of the equation
back as described in Eq2). They investigated numerically X+K=f(x).
the logistic and the exponential maps, with some specific Proof: We first prove the claim using only information on
choice of parameters and initial conditions. Graphsxgf the interval[Oxy]. In this case we can relax all the condi-
versusn were plotted, showing some number of iterations oftions onf(x) concerningx>xy including unimodality. We
the map(2). These graphs demonstrated apparent decay to@nsider the equation
fixed point and apparent periodic behavior with some values
of feedbackK, in contrast to apparent chaotic behavior with- f'(x)=1. (4)
out feedbackKi.e.,K=0). However, no proof of convergence
was given, no discussion of appropriate initial conditionsFrom the conditions given of(x) it follows that Eq.(4) has
was mentioned, and no rigorous argument was offered tgxactly one solution in the interval (8,). We denote this
show how to choosK. TheK-r parameter space of the two solution byxp and seta,=f(xp) —Xp. We also definea,
maps was divided into regions displaying different behavior,= f(Xw) —Xum . Sincef’(xp)=1 and we have”(x)<0 on
based on numerical tests with successive incrementé of (0, Xy) we conclude that &a;<a,. Now, for any given
andr values. It was suggested that the sign of the values oK € (a;,a;) the equation
K that are capable of suppressing chaos depends in general
on f(x). This speculation is inaccurate, and we show here x=f(x)—-K 6)
that it is always possible to chooge>0.

Numerical investigation of a discrete system may givehas exactly the two solutions on the interxai (0, xy). We
some indication of its dynamics. It is extremely useful in denote these solutions by =x, (K) andxg=xg(K), where
both complicated and simple cases, and often seems to be the<Xg<Xpy .
only feasible approach. Nevertheless, the possibility of draw- Suppose now that for some=0 we havex, e (X, Xg).
ing general conclusions from numerical investigation in thisSince on the intervalx_ ,xg) we havef(x) —K>x, we may
context is limited. A finite number of iterations started with conclude thak ;= f(x,) — K>x,. On the other hand, since
some specific initial condition can at best demonstrate case€x) is monotonically increasing onx(,xg) we also have
where the algorithm apparently works. It cannot prove that &, = f(x,) —K<f(xg) —K. Consequently, for any
sequence of iterations converges or displays chaotic or perk, e (X, ,Xg) we have by induction that, is a monotonically
odic behavior. Furthermore, to make the suggested algorithimcreasing bounded sequence, and is therefore convergent.
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Its limit is a solution of Eq(5), and since it is clearly not, , =f(Xw)—*m, a;=f(Xy)—Xs. 5. For any choice ofK
we finally havenﬂ[p(ﬁxR, which proves the desired result. <(a;,a,) the sequencex, is convergent, and ifK
This construction does not use any information on thee (a,,a,) it converges monotonically. 6. For any appropri-
behavior off(x) beyondxy . However, if we use such in- ate value ofK, the initial conditionx, may be any chosen
formation onf(x), we can extend the interval from which value in the interval X, ,xg) wherex, <xg<xy are the two
we are allowed to choogg. In this case, the convergence to solutions of the equatiofi(x) =x+ K. The limit of x,, is Xg.
the limit is not necessarity monotonic. We consider the equa-
tion C. Examples
fr(x)=—1 6) 1. We demonstrate our me_thod with the logistic map
f(x)=rx(1-x): [0,1]—[0,1] with 3<r=<4. Theorem 1
provides all the information required, and the calculations

From the conditions given of{x) we conclude that Eq6) are straightforward:

has a unique solution on the intervg) <x<xg. We denote
this solution byxg and seta;=f(xy)—Xxs>0. The condi- 1
tions given on f(x) assure that &aj<a,. For any a;=T(Xp) =Xp=7- (r?=2r+1),
K e (a;,a;) we definex, (K) andxr(K) as the two solutions

of Eq. (5), as above. To complete the proof we show that if

interval, and the result follows.

/ 1 1
Xo€ (XL ,Xr) andK e (a;,a,) the sequence, converges to a;=f(Xy) —Xy=-— =,
Xgr. The sequence, is bounded byf (x;) — K. Since it can- 4 2 )
not be monotonically increasing, it follows that there is an
index k wherex, e (X ,f(xy) —K). Since the choice oK 1
Cnli _ _ " : ; aj="f(xy)—xs=-— (r2—2r—2)
implies f(Xy) —xs<K<f(Xp)—Xm, and f”(x)<0 in this 1 M S™ 4r '
interval, we have —1=f'(xg)<f'(f(xy)—K)<f'(Xn)
=0. Therefore, the ma(8) is a contraction on the discussed P Forae Sy eve

XL XR= 2r

A. Remarks . . . .
We consider the choice= 3.8, which was the case studied in

1. A natural question that arises following the proof of the[16], where it was shown that 150 iterationsxafdefined by
theorem is: What happenS)iB is not chosen in the interval Eq (3) and started fronxO: 0.3 “apparenﬂy Converge” to a
Xo€ (X_,Xg), as required by the theorem? This question isfixed point if K =0.3, whereas this apparently does not occur
actually related to the fact that the modified n{@8pdoes not  for K=0.2 (period-2 orbits or for K=0 (chaotic orbits.
map the interval to itself. Therefore, if the initial conditions  similar results were reported in this context[R¥].
are not chosen within the intervat,(,xg), we can not guar- For this choice ofr, theorem 1 assures that for all
antee convergence to equilibrium. If<o<x_, the se- (0.318 425xK<0.515 78 the sequenoe, converges to the
quencex, decreases until it eventually becomes negative. Alimit xz(K)=xg. This holds for all initial values within

that point we stop the iterations and declare the extinction ofy, (K),xx(K)), specified in Eq.(7). Further, if 0.45K

the population. If,>xg then the dynamics depend 6(x).  <(.515 789 the sequenog is also monotonically increas-
The sequence, starts decreasing and after a finite numberjng.

of iterations it either falls within the intervalx( ,xg) and As explained above, theorem 1 provides only sufficient
then converges as explained above, or falls betlpwhere byt not necessary conditions. For example, note that the
extinction occurs. choiceK =0.3 with x,=0.3 that was used i[23] belongs to

2. We also point out theorem 1 provides only sufficientg region where in general the algorithm may or may not
conditions for convergence. Values Bf outside the pre- succeed, depending on the specific map. In this specific case,
scribed interval can either succeed or fail in suppressing chaonvergence occurs becausg=0.3=x,;=0.4980 and the
otic or periodic oscillations, and can also drive the populamap (3) is already a contraction in this region.
tion to extinction(compare to the results reported 24]). In 2. We examine the exponential mapf(x)
general, this depends on the map andkgnas demonstrated —ygf(1=%:[000)—[0.2) with the choicer =2.8 as in[23]
below. In terms of population management, this means thajhere plots of 150 iterations of, defined by Eq(3) and
inappropriate values df are “dangerous.” started fromx,=0.3 were displayed. They indicated appar-

3. Control by harvesting is not necessarily successful withent convergence to a fixed pointif=—0.95 whereas this
unimodal maps that do not satisfy the conditions of theoremyiq not occur fork =—0.5 (period-2 orbits or for K=0

1, particularly the smoothness requirements. One easy eXchaotic orbits.
ample is the mag(x) =1/2x whenxe[0,1/2] and f(x) =1 To use theorem 1 we solve the equations-¢k)e" >

—1/2x whenxe (1/2,1]. ==+1 and obtainxe andxs. Clearly,xy=1/r, and the re-
maining calculations are straightforward. Kot 2.8 we find

B. Summary of the method that if 1.731 169<K < 1.803 445 the sequeneg converges
Solve f’(x)=1 on (Oxy) to obtainxp. 3. Solvef’(x)=  (XL(K).Xr(K)). To computex, (K) andxg(K) for a g(ilVFP
r X

—1 on (Xy,Xg) to obtainxs. 4. Seta,=f(xp)—Xp, a;  value of K one only needs to solve the equatirg
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=x+K. Note that the interval of feasible values Kf>0  requires only solving some one-dimensional equations. Once
decreases asis increased, as indicated by tHer param- this is done, andK and x, are chosen appropriately, the
eter space map if23]. algorithm does not depend on the dynamics of the map any
more. To the extent that such maps indeed capture the essen-
IIl. DISCUSSION tial features of the population growth, this algorithm can be
useful for managing and exploiting populations.

There exist simple examples of discrete maps where it is Finally, we point out that it is not obvious how our algo-
easy to observe numerically rich dynamics but difficult toyithm would perform in the presence of stochastic noise in
prove rigorously_that this indeed occurs. Numerical simul_a-the population, as may be the case in real systems. Particu-
tions are crucial in many such cases and are the only feasib|grly, it is not clear whether extinction would prevail over
approach in others, as seen frequently in the literature. Howeonvergence to the desired fixed point. It is also not clear
ever, the ability to make general predictions based on a finitg gy to generalize the algorithm to multidimensional maps.

number of iterations of discrete maps is rather limited. It iSThese points may be interesting directions to pursue.
therefore important to distinguish between numerical evi-
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